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Abstract 

Safety analysis frequently relies on human estimates of the likelihood of specific 

events. For this purpose, the opinions of experts are given greater weight than 

the opinions of non-experts. Combinations of individual judgements are given 

greater weight than judgements made by a lone expert. Various authors advocate 

specific techniques for eliciting and combining these judgements. All of these 

factors – the use of experts, the use of multiple opinions, and the use of 

elicitation and combination techniques – serve to increase subjective confidence 

in the safety analysis. But is this confidence justified? Do the factors increase the 

actual validity of the analysis in proportion to the increase in subjective 

confidence?  

 

In this paper, by means of a critical synthesis of evidence from multiple 

disciplines, we argue that it is plausible that expert judgement deserves special 

standing, but only for well understood local causal mechanisms. We also 

conclude that expert judgements can be improved by using appropriate 

elicitation techniques, including by combining judgement from multiple experts. 

There is, however, no evidence to suggest that fuzzy algorithms, neural 

networks, or any other form of complicated processing of expert judgement have 

any advantage over simple combination mechanisms.  

1 Why does expert judgement validity matter? 
 

Would you trust a panel of government risk experts who told you that it was safe 

to build a nuclear waste processing plant in your neighbourhood? How about an 

international community of scientists predicting climate change? How about a 

single engineer telling you not to cross a bridge, because their calculations 

suggested it was unsafe?  

 

Safety analysis has always, to a greater or lesser extent, relied on the opinions of 

experts.  Individuals with specialist domain knowledge, or with superior 

understanding of risk analysis, are called upon to determine the nature, size, and 

acceptability of risk. Risk estimates produced by experts are more believable, but 

this does not necessarily make them more correct.  



 

Our discussion in this paper is concerned with the use of experts for estimating 

the risk of major accident events. Unlike some risk problems such as population 

health, where there is a substantial body of recent data on which to base 

projections, major accidents occur too infrequently for past statistics to be a 

good indicator of risk.  

 

It is in these situations that expert judgement is most necessary, but also most 

questionable. A clear understanding of the validity of expert judgements, and of 

how their validity is influenced by methods of elicitation and combination is 

essential for good safety practice. It is also important to be able to draw a clear 

distinction between expert estimates and value judgements. Experts should 

demand a role in decision-making only to the extent that they have something 

offer, not because their status confers special privileges.  

 

There is an increasing trend to make use of multiple expert opinions in safety 

analysis, and to formalise the way these estimates are used. This involves 

documented methods for how opinions are elicited, how they are combined, and 

how they are integrated with other facets of the analysis. The trend is manifest in 

the academic literature - for recent illustrative examples see Zhou (2017), 

Forteza (2016),  and Kokangul (2017) – and in regulatory guidance (Boring et al., 

2005). 

 

Practices for forecasting using expert judgement have been heavily studied 

outside safety science. In particular, there has been extensive work within social 

psychology and management focussing on group decision-making, and within 

economics focussing on the mathematics of combining individual probability 

estimates. There is also a body of large-scale experimental work using prediction 

markets and competitive forecasting. A lot is known about expert forecasting, 

but little of this knowledge is employed in safety practice.  

 

In writing this paper we have been motivated by the proliferation of complicated 

techniques in the academic safety literature for eliciting and combining expert 

judgments. Of particular concern are papers that make definitive claims about 

the size and nature of risk based on these methods. Such research takes an 

unequivocally realist position on the nature of risk, whilst making unwarranted 

assumptions about the validity of the methods used. For example: 

 That the performance of a safety management system has improved 

 That human factors make a greater contribution to coal mining accidents 

than other safety issues 

 That there is a particular ordered ranking of risks for cargo ships 

 That particular geographic locations are more dangerous than other 

locations 



 That specific companies are safer than other companies1 

 

Frankly, we would like this researcher behaviour to stop. Armstrong suggests 

that the Golden Rule of forecasting is “be conservative by adhering to cumulative 

knowledge about the situation and about forecasting methods” (Armstrong, Green, 

& Graefe, 2015). In other words, forecasts should take into account what is 

known about forecasting itself, not just what is known about the problem at 

hand.  

 

There are two questions that must be answered before expert opinion can be 

used to make definitive claims about safety risk: 

 

1. What can be currently claimed about the validity of expert estimates as data 

for the purpose of safety risk estimation? 

 

2. Under what circumstances, and to what extent, do methods for elicitation and 

combination of expert estimates of safety risk improve their validity?  

2 Is there such a thing as a “risk estimation expert”? 

2.1 “Expert” is a very ambiguous term for risk assessment and analysis 
 

Predicting the future is a fundamental element of carnival fortune telling, sports 

betting, religious prophecy, and financial planning. Some types of prediction can 

be trusted, and others are cannot. Some people are better at making predictions. 

What does it mean to be an “expert” at predicting the future?  

 

There are two main definitions of experts for the purpose of forecasting. 

 

1. An expert is someone whose judgement is accorded extra weight, due to 

their qualifications, experience, and other signals of authority 

(Farrington-Darby & Wilson, 2006). 

 

2. An expert is someone who makes especially accurate forecasts (Mellers et 

al., 2015).  

 

Each of these descriptions is, in its own way, a fair summary. Which definition 

applies for risk assessment and analysis depends on how exactly risk is 

understood.  

 

                                                        
1 It is not our intention to name and shame individual authors, so we have listed here 

unreferenced examples of recent definitive claims about risk based on processing of expert 

judgement. 
 



The realist view (Smith, 2004) maintains that risk is a real, objective and 

quantifiable truth. The likelihood of an event in the future becomes the 

frequency of that event with the benefit of hindsight. Whilst we cannot know for 

certain how accurate risk estimates are at the time they are made, their accuracy 

may (at least in principle) be knowable at some point in the future.  

 

In contrast, the phenomenological tradition, as explained by Rosa (1998), holds 

that even if objective risk exists as an abstract idea, there is no way to separate 

objective risk from our subjective and constructed experience of risk.   

 

Very few researchers or practitioners argue that risk is entirely objective or 

entirely constructive – strict realism and strict phenomenology are extremes on 

a theoretical continuum. However, an inclination towards one paradigm or the 

other determines what is knowable about risk, and therefore what can be “valid”.  

Most practical risk assessment is conducted from a generally realist perspective, 

whilst acknowledging that some degree of uncertainty is inevitable. Estimating 

risk, under this perspective, is analogous to guessing the number of marbles in a 

jar. The estimate is subjective, and the true number may never be known, but it 

is still possible to make statements about the objective goodness of the estimate. 

Goodness encompasses accuracy, certainty, and calibration. 

 

An estimate is more “accurate” if it is closer to the true number.  For example, if 

there are 250 marbles, an estimate of 240 is more accurate than an estimate of 

230.  

 

An estimate is more “certain” if it provides a narrower range of values. For 

example, an estimator might say “90% of the time, the true number of marbles 

will be between 240 and 260”. An estimator would be overconfident if 

statements of this type were correct less than 90% of the time, and under-

confident if they were correct more than 90% of the time.  

 

There is no accepted term for correctness of certainty. We will use “calibration”; 

an estimate is calibrated if it is neither under confident nor over confident. It is 

better for an estimate to be more certain rather than less, but only if it is also 

well calibrated.  

 

The applicability of “accuracy”, “certainty” and “calibration” obviously depend on 

how risk is described. Not all descriptions of risk involve quantification 

(Kristensen, Aven, & Ford, 2006), and not all quantified risk includes separate 

assessment of certainty.  

 

Not everyone agrees that risk estimate validity can be discussed in terms of 

accuracy, certainty and calibration at all.  For those who believe that risk is 

primarily constructive, risk assessments and analyses are cultural artefacts. They 

document rather than determine decisions about risk. Validation comes from 



“justifying the choices made in producing statements about risk” (Goerlandt, 

khakzad, & Reniers, 2016). 

 

In this paper,  following the “pragmatic validity” approach of Rae (2012) and 

Goerlandt (2016), we will evaluate claims about expertise in terms of the 

ontology used by the people who are making those claims.  If risk assessments 

and risk analyses are being used for the sole purpose of explaining how decisions 

have been reached – that is, their makers are not intending to make objective 

statements about risk – then “accuracy” is not a meaningful dimension. These 

analyses should be validated based on a constructivist understanding. However, 

when risk estimates are attempts to describe risk as a real objective 

phenomenon - as they are whenever risk estimates are an input into decision 

making about further risk treatment – the risk estimates must provide a good 

description of the thing they purport to measure (Rae et al., 2012).  

 

The combination of realist ontology and the use of experts requires a link 

between the two definitions of expertise. Experts should be a group of people 

whose opinions are deserving of extra weight because those opinions can be 

expected to be some combination of more accurate, more confident, and better 

calibrated.  

 

Does such a group exist?  

 

There are several plausible ways in which a potential expert could have a 

systematic advantage in making forecasts.  

 

The first mechanism – private information – is that they could have access to 

privileged information held only by experts (Morgan, 2014). In economics, it is 

commonly assumed that given the same information, two people will produce 

similar forecasts, with small variations due to error and uncertainty. What 

distinguishes the “expert” from the “lay person” is a store of private information. 

Private information does not need to be explicit. It is possible that an expert 

cannot fully articulate exactly what it is they “know” that other people do not. 

However, they can use this information intuitively to make better predictions.  

 

The second mechanism – domain knowledge – works through deep 

understanding of the specific causal mechanisms that lead to future outcomes in 

each particular case. What appears random and unpredictable to a layperson 

may be obvious to a scientist or engineer who understands the natural laws or 

technological principles governing the outcome (Farrington-Darby & Wilson, 

2006). This type of expertise is more about the ability to process information 

than the information itself – a civil engineer doesn’t just know the relative 

strengths of various materials, but also how to calculate the integrity of a 

structure incorporating those materials.  

 



The third mechanism – super forecasting – is that experts may have superior 

general ability to extrapolate from the past to the future. This may be through 

pattern-matching skill – either instinctive projection of trends in the in the same 

way that an elite sports player can judge the future position of a ball, or by 

mastery of statistical tools for the identification of trends. Unlike the first and 

second mechanisms, the experts have no private information or domain 

knowledge, but they are more successful than others at reaching statistical 

conclusions. They are experts in the generic act of forecasting (Armstrong et al., 

2015).  

 

The three mechanisms are not entirely disjoint, but they indicate that there is a 

spectrum of forecasting expertise specificity. Super forecasting is quite generic 

and may be applied to a wide range of problems. Forecasting expertise based on 

knowledge of causal mechanisms is domain specific, but may be applied to most 

problems within that domain. Forecasting expertise based on private 

information is limited to those problems where the data is relevant.  

 

Some problems are more or less tractable for each mechanism. Super forecasting 

and private information are useful where historical data provides a trustworthy 

(but obscure) indication of the future. Domain expertise is useful for novel 

situations where historical data does not apply, but where causal models have 

some predictive power.  

 

All forms of expertise are at their weakest where there is little relevant historical 

data, and where the causal mechanisms are not well understood. In such cases, 

are some people still better forecasters than others? If so, under what conditions 

are they able to make more accurate predictions?  

2.2 Expert accuracy is difficult to study 
 

The debate surrounding the “Classical Method” of presenting expert assessments 

of uncertainty (Aspinall, 2010) provides a useful illustration of the theoretical 

and empirical difficulties in researching expert estimates. The Classical Method 

involves asking several experts for their “best estimate”, as well as a confidence 

interval. For example, “How much will the project cost?” and “What is the lowest 

and highest value such that the true cost will fall between those values 95% of 

the time?”  

 

Prior to the substantive estimation task, the experts are asked to participate in 

tasks using “seed variables” known to the elicitors but not the experts. 

Performance on these tasks is used to differentially weight the experts in the 

substantive estimation, such that greater weight is given to experts who perform 

better against the seed variable tasks.  

 



Each step in the Classical Method is well defined, and there is considerable real 

world experience with the method. Yet, it is a matter of considerable controversy 

how well the method works (Bolger & Rowe, 2015; Roger M. Cooke, 2015).    

 

The fundamental disagreement is about the relationship between the seed 

variable tasks and the substantive estimation tasks. Bolger and Rowe argue that 

since the seed variables represent known values, performance on these tasks is 

largely determined by skill at describing probabilities. Someone with low 

domain knowledge but good calibration may outperform a domain expert who is 

more accurate, but also overconfident or under confident. There is no reason 

(according to Bolger and Rowe) to believe that this superior performance 

translates to the substantive estimation task.  

 

Cooke responds by suggesting that the purpose of weighting is not to 

differentiate experts based on accuracy, but on their calibration. There is (no 

reason (according to Cooke) to believe that superior calibration demonstrated 

on the seed variable tasks does not translate to superior calibration on the 

substantive estimation tasks.  

 

The continuation of this debate 25 years after the Classical Method was first 

presented shows how difficult it is to provide fully persuasive arguments or 

empirical evidence about expert risk estimation performance.  

 

To start with, there are many experimenter degrees of freedom in designing the 

experiment: 

 

Who counts as an “expert”?  Performing an experiment requires a sizeable 

body of experts. Actuaries, finance analysts, safety advisors and nuclear 

physicists represent very different types of expertise. Studies that show an 

advantage for one group of experts do not necessarily generalise to other 

experts.  

 

Who serves as the control group? It has been well established that cultural 

factors (Wildavsky & Dake, 1990) and demographics (Kahan, Braman, Gastil, 

Slovic, & Mertz, 2007) influence risk perception. Unless the expert group and 

control group are demographically matched, it is hard to say whether any 

observed effect is the result of expertise, rather than of culture and 

demographics.  

 

What task are the subjects given to perform? “Ecological validity” refers to 

the extent to which an experimental task matches a real world task. For some 

experiments, this has been interpreted as needing experts to perform a risk 

estimation task with which they are familiar. However, such designs actually 

reduce the generalizability of the experiment to other settings. If experts 

perform better merely because they have more practice at one specific task, this 

says little about their generalised ability to estimate risk.  



 

How is performance evaluated? 

There are different ways groups of estimates can be compared. On average (i.e. 

the mean) are their predictions higher or lower than another group? Is the 

average member of the group (i.e. the median) higher or lower? Is their average 

error higher or lower? Are their results more spread out, or tightly clustered? 

Where do most of the answers in the group (i.e. the confidence interval) fall? 

 

How are differences interpreted? 

Even when experts make different predictions to lay people, this is not 

necessarily representative of improved performance. In some cases, there is no 

correct answer to compare estimates with. Even when there is such an answer, 

remember that the “correct” answer has been chosen by researchers, who are 

presumably themselves “risk experts” and therefore have much in common with 

the expert subjects. What appears to be objectively better performance may be 

stronger alignment of values and assumptions between the experts and the 

researchers.  

 

All of these issues make it difficult to draw conclusions about risk forecasting. 

They also provide numerous avenues for challenging empirical results.  

 

For example, one of the earliest sets of studies on risk perception was conducted 

by Slovic (1985). These studies held that expert judgements of risk are based on 

likelihood and consequence, whereas lay judgements are distorted by qualitative 

factors. This view has been highly influential in subsequent risk research 

(Sjöberg, 2002). 

 

Critics of the Slovic studies have since pointed out problems with each of the 

experimenter degrees of freedom (Rowe & Wright, 2001; Sjöberg, 2002): the 

experts “included a geographer, an environmental policy analyst, an economist, a 

lawyer, a biologist, a biochemist, and a government regulator of hazardous 

materials” (Slovic, Fischhoff, & Lichtenstein, 1979); the differences between the 

experts and the other groups are explainable in terms of their demographics; the 

task was ambiguous; most of the variance occurred in a small number of items; 

and the “correct” values chosen by the researchers were not predetermined. 

 

Whilst it is easy, with hindsight, to point out the problems with any particular 

study, it is also hard to design a study that escapes such criticism.  

 

Rowe and Wright (Rowe & Wright, 2001) review eight other empirical studies 

comparing experts with lay risk assessors, and point out consistent problems 

with the selection of the expert group, the design of the task, and the 

demographic matching of the expert and non-expert groups. Without such 

matching, they emphasise, any observed difference between lay and expert 

groups is explainable by factors such as age, gender and education.  

 



Rowe and Wright also note that none of the studies provides an indication of the 

accuracy of the risk estimates (as opposed to just indicating that the lay and 

expert groups made different estimates). In absence of direct evidence about 

accuracy, the apparent lack of reliability (i.e. agreement between the experts) 

provides a strong suggestion that the experts were not accurate. Reliability is a 

prerequisite for accuracy (Rae et al., 2012). 

2.3 Experts do not have access to privileged information about safety risk 
Fischhoff (1982) suggests that any advantage experts have in risk estimation 

comes, “not in the way they think, but in the substantive knowledge they have at 

their disposal”. When going beyond the available data or outside their realm of 

expertise, they may in fact operate at a disadvantage by relying on particular 

types or sources of data that are no longer core to the problem at hand.  

 

All real-world risk estimates that rely on expert judgement operate outside the 

available data. Experts have a systematic advantage in experimental settings, 

which almost always involve risk problems for which there is a known answer.  

For example, Wright (2002) found that insurance underwriters were marginally 

better at some risk judgements than lay subjects. The experiment was 

specifically designed to match the types of judgements that the underwriters 

made in the course of their employment, and asked about population mortality 

risk, a topic where the underwriters were regularly exposed to the data they 

were tested against. Even under these ideal conditions the “experts” only 

performed slightly better than the lay subjects.  

 

This improved performance evaporates when experts are asked to provide 

estimates in situations where the answer is unknown until after the estimate is 

made (Goodwin & Wright, 2010). There are two mechanisms undermining the 

experts. Firstly, they simply do not have enough examples of previous events – a 

“reference class” – to make accurate judgments. To the extent that they try to use 

their privileged knowledge about past events, they will be misled because the 

reference class does not adequately represent the circumstances they are 

hypothesising about. In fact, whilst their estimates are no better than lay 

predictions, experts may be overconfident in these estimates due to thinking that 

they do have useful privileged information (Lin & Bier, 2008). When asked to 

provide a range of estimates in this fashion, experts are more confident than lay 

estimators – they give narrower ranges – even though they are not more 

accurate.  

  

Experts are also undermined by a lack of feedback. The development of expertise 

requires practice at a learnable task. A learnable task is one with a strong 

performance-feedback loop. Where there is no such loop – where risk estimators 

do not receive clear feedback on the accuracy of their predictions – experience 

does not build expertise (Rowe & Wright, 2001). 

 



We do not mean to imply that historical data is an alternative to expertise, or 

that access to data makes someone an expert. Thomas (2004) points out that the 

target failure rates specified in standards for safety critical systems are in fact 

too low to ever be demonstrated. This is true even for the lowest levels of 

criticality (SIL 1 in IEC 61508). For these systems, the actual risk will never be 

known, and so the risk estimators will never have feedback on their 

performance. Expert judgement about risk under these circumstances is in 

practice endorsement of the design and the processes used to ensure that the 

design is safe, rather than an estimation of the residual risk per se, even if the 

judgements are expressed in the form of probabilistic estimates.  

2.4 Domain experts may have superior understanding of causal 

mechanisms 

Richard Feynman, in discussing NASA management culture, famously said “As far 

as I can tell, ‘Engineering Judgement’ just means they’re going to make up 

numbers!” (Feynman, 2001, p. 183). In context, Feynman was drawing a 

distinction between engineering “analysis” – which he considered to be 

trustworthy and objective– and engineering “judgement” – which he considered 

to be arbitrary and subjective.  

 

Is this distinction real? Quantitative Risk Assessment has a controversial status 

as a form of analysis (Aven & Heide, 2009; Rae, Alexander, & McDermid, 2014), 

but there are many other forms of technical analysis that produce accurate 

quantitative outputs. Examples of such analysis include: 

 Short-term weather forecasting 

 Fire and explosion modelling 

 Static and dynamic analysis of loaded structures 

 Pedestrian and traffic modelling 

 Climate change modelling 

 

The common feature of these types of analysis is that they involve the 

application of scientific and engineering principles to extrapolate the future state 

of a system from its current state. There is still some uncertainty in this process, 

since it is still necessary to create or select an appropriate model, and to choose 

suitable parameters for the influences on the system; however experts may be 

presumed to have an advantage in performing both of these tasks (Notarianni & 

Fischbeck, 1999).  

 

This presumed advantage is disputed by Armstrong (1985), who suggests that a 

small amount of domain knowledge provides a benefit for understanding a 

forecasting problem, but that beyond this point further domain expertise does 

not translate into increased forecasting accuracy.  

 

The advantage that experts hold is strongest when the model incorporates a 

small number of physical laws from a single domain, and weakest when it is 



unclear what is or is not within scope of the model (Rae et al., 2014). Predicting 

the effect that a specific rate of CO2 emissions will have on the global 

temperature is a very different task from predicting how the international 

community will respond to climate change.  

2.5 Expertise does not confer immunity from bias – but the ability to 

reduce bias may be a form of expertise  

Accuracy in risk estimation can be achieved by reducing either random or 

systematic error. The previous section suggests that experts do not have an 

advantage for risk forecasting by reducing random error using information. 

However, it has also been suggested that experts might have superior skill at 

reducing systematic error (Slovic et al., 1979). 

 

Unfortunately, it appears that domain experts exhibit the same types of bias as 

lay people, especially when forced to go beyond the limits of their expertise 

(Fischhoff et al., 1982; Lin & Bier, 2008; Skjong, Wentworth, & others, 2001). 

Moreover, there is some evidence that experts may be more prone than non-

experts to particular types of bias. For example, experts may tend to structure 

problems to include existing numerical data and exclude difficult-to-quantify 

factors (Fischhoff et al., 1982; Slovic et al., 1985). They may also experience 

overconfidence (Lin & Bier, 2008) and anchoring based on early information or 

previously expressed opinions (Kinney & Uecker, 1982).  

 

There is, however, some evidence of forecasters who are more expert precisely 

because they are less prone to reasoning errors. Mellers et al. report on a large 

scale experiment in the identification and development of “superforecasters” 

(Mellers et al., 2015). The experiment made use of a forecasting competition to 

identify individuals who were skilled at real-world predictions. The longitudinal 

nature of the competition allowed for forecasting tasks where the correct answer 

was unknown before the study, but was known afterwards (unlike laboratory 

experiments where it is possible to know in advance the value to be “predicted”). 

The study presents four hypotheses for the success of the successful individuals: 

 

1. General cognitive abilities and styles such as fluid intelligence, 

enjoyment of problem solving, and willingness to change their minds 

2. Task specific skills, such as the ability to make consistent probabilistic 

judgements (particularly with respect to conditional probabilities) 

3. Motivation and commitment  

4. More frequent and nuanced interaction with other forecasters 

 

All four possibilities are plausible based on correlations between the 

hypothesised success factor and performance in the experiment. However, the 

project focussed on prediction of newsworthy events, with a particular emphasis 

on politics. It is not possible at this stage to exclude the possibility that the 

superforecasters achieved their superior results simply through superior general 



knowledge of current affairs and politics, rather than from truly generic non-

domain forecasting expertise.  

3 Can expert judgements of risk be made more accurate? 

3.1 The way questions are asked influences the validity of expert forecasts 
Mosleh (1988) makes a distinction between “substantive goodness” and 

“normative goodness” for expert judgements. Substantive goodness refers to an 

expert’s subject matter knowledge, whilst normative goodness refers to the 

expert’s ability to express that knowledge in probabilistic form. The way in 

which a problem is put to the expert can significantly change the normative 

goodness. Different ways to ask the same question can encourage or discourage 

cognitive bias. They can also create a mismatch between how the expert 

understands the question, and how the information is going to be used.  

 

Framing bias (Skjong et al., 2001) is where experts are unconsciously steered 

towards a particular answer by the way they are presented with information. For 

example, a problem may be presented in a way that has lots of detail about 

operator error and limited detail on mechanical failure, or vice versa. An 

unbiased analyst should, in principle, treat the shortage of information in one 

area as increased uncertainty. In fact, experts are more likely to present an 

answer dominated by the more detailed topic. They are more sensitive to 

information that is presented in great detail. The effects of framing bias can be 

reduced by allowing experts to seek out relevant information for themselves, 

rather than by providing them with lots of detail in the problem presentation.  

 

Anchoring (Tversky & Kahneman, 1974) is where individuals form a starting 

estimate (the “anchor”) and then insufficiently adjust this estimate based on 

further information. The starting estimate may come from a recent similar task, 

the first stage of a mental computation, or information provided in the question.  

For example, consider an expert asked to estimate the hourly frequency of death 

for driving a car, and then asked to estimate the hourly frequency of death for 

riding a motorbike. They are likely to select two values that are closer to each 

other than the actual historical figures are. Anchoring effects can be reduced by 

asking for upper and lower bounds rather than for a “best estimate” followed by 

a judgement of uncertainty (Morgan, 2014) 

 

Equivocation involves multiple meanings for the same term. Walsten (1986) 

and Wardekker (2008) point out the considerable difficulties with semi-

quantitative elicitation of risk judgements. Individual interpretation of 

probabilistic terms such as “about as likely as not”, “medium likelihood”, and “to 

be expected” varies widely, making it unlikely that two experts selecting the 

same qualitative term are in fact referring to the same underlying quantified 

range of likelihoods.  

 



Framing bias, anchoring, and equivocation are not the only forms of bias in risk 

estimation. They are representative examples that demonstrate why the design 

of appropriate questions, based on up-to-date understanding of cognitive science 

literature, is important for expert forecast of probabilities.  

3.2 Training experts influences the validity of their forecasts 
Research on expert elicitation that suggests that particular modes of thinking 

result in better estimates (Mellers et al., 2015). However, elicitation research is 

itself mostly only validated for non-forecast probabilistic judgements. Applying 

this research to the question of forecast validity must assume that there is some 

degree of substantive goodness in the expert judgements, such that 

improvements in normative goodness improve the overall goodness. It is also 

necessary to assume that improving expert performance on non-forecast 

estimation tasks carries over on to forecast estimation tasks.  

 

For example, systematic under or overestimation can be improved by asking 

experts to perform sample tasks, and then providing feedback on their 

performance (Morgan, 2014). This type of training also decreases expert 

confidence – necessary, since experts are typically overconfident.   

 

There is also some evidence to suggest that asking estimators to make multiple 

judgements, either at different times or using different assumptions, can improve 

accuracy (Herzog & Hertwig, 2009; Vul & Pashler, 2008). 

3.3 Task decomposition influences the validity of expert forecasts 
There is mixed evidence on whether decomposing a risk forecast problem into 

smaller problems helps or hinders forecast accuracy (Chhibber, Apostolakis, & 

Okrent, 1992). On the one hand, decomposition of a problem into smaller 

problems improves transparency, and allows the use of multiple specialists with 

different areas of expertise. It also allows for the possibility that asking for many 

smaller estimates allows errors in those estimates to cancel each other out.  

 

On the other hand, decomposing increases the complexity of the forecasting 

problem. It introduces further source of errors: the decomposition model itself 

can be wrong, or the experts may misunderstand which part of the problem they 

are being asked about. Rosqvist (2010) explains that transfer of parameter 

information from a domain expert to a risk analyst requires shared 

understanding of the mental model. However, mental models can only be 

represented by artefacts rather than directly compared, and are not stable over 

time.  

 

Estimation decomposition may be considered analogous to decision-support 

tools that ask users a series of simple questions that are algorithmically 

combined to provide a final answer (Burns & Pearl, 1981). Such systems assume 

that the users are “expert” in the sense that they hold relevant information, but 

that the tool is “expert” in its understanding of cause and effect. For risk forecast 



problems, decomposition makes sense if the experts have privileged information, 

but not if they are being relied on for their domain expertise. Domain expertise 

relies on knowledge of the structure of the problem – asking a domain expert for 

information in a way that presumes that the questioner knows more about the 

problem structure than the expert defeats the purpose of expert elicitation.  

4 Are multiple experts better than one expert? 

4.1 Opinions can be combined socially or mathematically 
Do groups make better decisions than individuals, as in the “Wisdom of Crowds” 

(Surowiecki, 2005) or does the suppression of dissent lead groups astray 

(Solomon, 2006)? Unsurprisingly, the answer is “It depends”. As suggested by 

Niall Ferguson, “serious students of human psychology will expect as much 

madness as wisdom from large groups of people” (Ferguson, 2009).    

 

A more useful task is to unpick when, how and why combinations of judgements 

are better than a single judgement for the purpose of risk forecasting. This task 

can be undertaken in several ways. All three approaches have the same inputs: a 

set of individuals with starting opinions, and a process by which the starting 

opinions are combined. The approaches differ in how they characterise the 

process.  

 

The first approach, used in social psychology, sees decision making as a form of 

social behaviour. The research objective is to examine by observation how 

groups interact to achieve consensus (Kerr & Tindale, 2011). Methodological 

approaches range from controlled experiments to textual analysis of real-world 

meetings.  

 

The second approach, common in economics, is to treat group decision making 

as an information-sharing problem. The researchers model the individual 

starting opinions, and run simulations to evaluate different algorithms for 

combination (Clemen, 1989). Each expert is modelled as an assemblage of 

private information, public information, and noise. On each simulation run their 

“opinion” is generated using a random value for the noise, and the algorithm is 

used to establish consensus.  

 

The third approach is to conduct large scale forecasting competitions, and to 

examine the individual strategies and group dynamics that lead to success 

(Makridakis & Hibon, 2000). This approach is initially agnostic as to the nature of 

the processes, but seeks to understand how good forecasters and forecasting 

groups describe their own processes.  

 

These research methodologies align with the practical methods by which 

judgements can be combined (R. M. Cooke & Goossens, 2004). Mechanical 

combination asks experts to make individual estimates, which are used as inputs 



to an algorithm to produce a final answer. Mechanical combination involves no 

social interaction, and so relies on information-sharing via the estimates 

themselves. As an alternative, behavioural combination allows interaction 

between experts to produce a judgement. Behavioural combination allows for 

experts to share information and attempt to persuade each other before reaching 

a consensus.  Whether persuasion is a good or a bad thing depends on whether 

being right makes someone more persuasive. We will address this question in 

Section 4.2.  

 

Some approaches use both mechanisms in sequential combination, with 

individual forecasts followed by group discussion, group discussion followed by 

individual forecasts, or multiple rounds of forecast and discussion.  

4.2 Allowing experts to interact is possibly a good idea 
For group-based decision making to improve forecast accuracy, it is necessary 

that some members will, after interacting with the rest of the group, update their 

original forecast in the right direction (Wright & Rowe, 2011).  

 

There are certain types of problems, known as “intellective” or “Eureka” 

problems, where the right answer is obvious once it is known (Laughlin & Ellis, 

1986). In a good riddle or cryptic crossword clue there is only one answer that 

“fits” – a group member who finds this answer can easily persuade the other 

members. 

 

For other problems (for example knowing the age of a celebrity) a person with 

the wrong answer is just as likely to be persuasive as someone with the right 

answer.   

 

Risk estimation is not a Eureka problem. However, there is a possibility that 

discussion between experts will identify errors in reasoning, and will enhance 

the information available to each expert (Mellers et al., 2015; Wright & Rowe, 

2011) 

 

The counterargument is that groups are predisposed to work towards 

consensus, rather than making small adjustments to the individual positions 

(Solomon, 2006). This phenomenon – groupthink – can result in the group 

selecting the most confident or authoritative opinion.  Relying on the most 

confident opinion is not necessarily a bad thing, and works well for problems 

where most people know the correct answer (Koriat, 2012). However, for 

problems where most people are wrong, the least confident person’s opinion is 

more likely to be accurate. It is not possible to know in advance whether the 

most confident or least confident person is more likely to be right.  

 

Kerr and Tindale (2011) suggest that in purely judgemental tasks (where there 

is no correct answer) groups tend to coalesce around the majority opinion. 

However, when the correctness of an answer can be justified, this increases the 



chance of a minority opinion prevailing. Unfortunately, it is often possible for an 

incorrect answer to be justified. Probability calculations are frequently counter-

intuitive, and groups may adopt “socially plausible but inappropriate” strategies.  

This phenomenon is illustrated by the history of the Monty Hall problem, where 

incorrect solutions are frequently more persuasive than correct solutions 

(Krauss & T, 2003). 

 

Strategies for group forecasting should take into account the success and failure 

mechanisms of groups. In particular, group forecasting methods should (Wright 

& Rowe, 2011): 

 Include an opportunity for group members to establish trust in each other 

as sources of information 

 Focus on sharing information, rather than just the individual estimates 

 Ensure minority viewpoints are expressed 

 Provide individuals an opportunity to reflect on new evidence, and to 

revise their original position 

 

4.3 Mathematically combining opinions provides a better understanding of 

both risk and uncertainty 

 

If experts are prohibited from social interaction during the forecasting process, 

then the efficacy of multiple experts is a mathematical problem with a clear 

answer. In almost all forecasting situations, combining expert opinions is more 

accurate than selecting an individual opinion.  

 

Combining individual results to produce a more accurate aggregate result has a 

long history (Graefe, Armstrong, Jones, & Cuzan, 2013). As early as 1818, Laplace 

noted that combining results of experiments reduced the effects of random 

noise. Zajunc (1962) describes the history of statistical aggregation of group 

estimates in psychology. The original now-famous article by Galton (1907) 

observed that the median answer in competition to guess the weight of an ox at a 

county show was also the most accurate answer. Subsequent work replicated 

this result with other estimation problems, and additionally found that often the 

mean answer was more accurate than any individual guess.  

 

The main mathematical property at work is now understood as the bracketing 

effect (Larrick & Soll, 2006).  Bracketing works regardless of the sources of 

individual error, which may arise from: 

 Different information held by different individuals 

 Different assumptions and models used to create estimates 

 Random variation (noise) in individual estimates.  

 

Imagine two or more forecasts, each with some amount of error, such that the 

true value is bracketed – it lies somewhere within the range of forecasts.  Then 



create an average of all the forecasts. Mathematically, the error for the average 

forecast will never be greater than the average expected value of picking a 

forecast at random. Also, the worst case for picking a forecast at random will 

always have a larger error than the average forecast.  

 

In other words, where there is a pool of experts with equal skill, it is never better 

mathematically, and may be considerably worse, to pick an individual than to 

poll the pool.  

 

What about where bracketing doesn’t occur? If there is systematic error in the 

pool, such that all of the experts are on one side of the correct value, then the 

average forecast will perform exactly the same as the expected value of choosing 

a forecast at random (Larrick & Soll, 2006). Under these circumstances there is 

decided benefit to finding and using the best individual, but there is no way of 

knowing if, and in which direction, the pool is biased. Trying to anticipate and 

compensate for all of the experts being biased is a recipe for dramatically 

increasing rather than decreasing error.  

 

The theoretical advantage of bracketing has been verified in practice through 

many experiments. Clemen (1989) performed a review of the experimental 

literature. In those experiments, combining always improved forecasts and often 

outperformed the best individual forecast.  

 

Once the bracketing effect is understood, the remaining question is whether a 

better forecast can be created by selecting a smaller, more accurate pool of 

forecasters – possibly even by choosing the best forecaster.  

 

Goldstein (2014) examined the problem of “smaller, smarter” groupings within a 

larger pool, by analysing the results of online fantasy soccer competitions. The 

experiment showed that increasing group size improved performance up to a 

certain point, after which further increase resulted in less accurate predictions. 

In other words, adding experts can improve the consensus even when it is 

predicted that their individual performance is worse than all of the current 

group members. Group performance comes from the aggregate knowledge, 

rather the average individual performance. However, additional experts bring 

noise as well as information. The tipping point occurs when adding an additional 

expert would contribute more noise than information. 

 

This is why election poll combining systems such as fivethirtyeight.com are able 

to make credible claims (backed up by a track record of successful predictions) 

that their model outperforms simply picking the individual polls with the best 

track record. It also explains why they incorporate (albeit with lower weighting) 

polls known to be historically less accurate (Graefe et al., 2013).  

 

Combinations of experts are an improvement over individuals not just for the 

direct forecast task, but also for understanding how reliable the forecast is. 



Knowing the degree of consensus between independent experts places a 

minimum bound on the amount of uncertainty contained in the estimate. Where 

experts strongly disagree, non-experts should not be confident even in an 

aggregate forecast.  

 

4.4 There is no extra validity in complicated ways to combine opinions 
 

In 1969, Bates and Granger experimented with various ways of combining 

forecasts about airline passenger data made by different models. In order to 

design their experiments, they considered (Bates & Granger, 1969): 

 

1. How should past performance of forecasters be taken into account in 

combination?  

2. How should individual forecasts be transformed before they are 

combined? 

3. Should the combination take into account internal details of the individual 

forecasting models? 

4. After any transformation, how exactly should the forecasts be combined?  

 

In the following decades, hundreds of papers provided different answers to these 

questions, seeking the ideal mathematical mechanism for combining a pool of 

forecasts into a single forecast.  

 

The simplest answer to the questions is to calculate a linear average, giving each 

forecast an equal weight. After a thorough review of twenty years of evidence, 

Clemen (1989) concluded that this is often the best method of combining.  

 

However, whilst Clemen’s conclusions are accorded considerable respect in the 

forecasting community (Wallis, 2011) there are a number of theoretical 

arguments why simple averaging with equal linear weights is not expected to 

produce an optimal answer. The first and most obvious argument is that equal 

weighting contradicts the starting assumption that some people are more expert 

than others. If all experts are presumed equal, this is inconsistent with the claim 

that experts are superior to non-experts.  

 

A second argument is that aggregate forecasts have different mathematical 

properties to single forecasts. For example, Baron et al. (2014) showed that 

aggregated probabilities correspond closer to the real world if they are 

transformed so that they are closer to 0% or 100%. There are both mathematical 

and psychological reasons for this. Mathematically, it is not possible to have a 

probability smaller than 0% or greater than 100%. Thus, as an individual 

estimate approaches 0% or 100%, noise is more likely to take it towards than 

away from 50%. Psychologically, experts tend to allow for their own ignorance in 

making estimates, biasing distribution away from extremes. Rather than 



cancelling out, as in the case of normally distributed noise, these skews are 

compounded by forecast aggregation.  

 

The third argument is that individual experts may hold information that is 

destroyed by simple aggregation. Why not ask experts not just for a final answer, 

but also for their intermediate calculations? Combining expert opinions for each 

part of the problem, rather than for the whole, might allow better integration of 

the full information held by each expert (Kaplan, 1992).  

 

Unfortunately, there is no evidence that any approach based on this third 

argument provides improved forecast accuracy. Zhang and Tai (2016) provide a 

review of one such method, Bayesian Belief Networks (BBN). In the field of 

maritime accidents alone Zhang and Tai identified over thirty published papers 

presenting methods for risk estimation using BBN with expert opinions. Most of 

these papers suggest that BBN provides superior objectivity and reduces bias. 

None provide evidence of increased accuracy.  

 

There is a similar body of work, with similar lack of evidence, covering the 

Analytic Hierarchy Process (AHP). See for example Wang (2016) claiming 

increased validity and making managers “feel more confident” but no evidence of 

increased accuracy. In fact, there are strong arguments that AHP may in fact 

introduce mathematical anomalies through impermissible mathematical 

operations, contradictory axioms, and misunderstood scales (Warren, 2004).  

 

BBN and AHP, along with DEMATEL, Neural Networks, and “fuzzy” variants of all 

four techniques, are mechanisms for aggregating expert opinions to provide risk 

forecasts. It is beyond the scope of this paper to comment more generally on the 

usefulness of these techniques for other purposes. For risk forecasting, there is 

an increasing volume of academic work refining, expanding, and combining the 

techniques, without any corresponding increase in the body of evidence 

suggesting that they can produce superior forecasts.  

 

Ball (2002) suggests that the proliferation of complicated risk estimation 

techniques is a response by the risk estimation community to broader social 

disputes about risk. Risk estimators are typically mathematicians and engineers - 

“those who enjoy quiet, meticulous work” - poorly equipped by training and 

inclination to engage in social and epistemological debate. Instead of responding 

to broad challenges to risk estimation validity, they concentrate on refining the 

technical detail of risk estimation methods.  

5 The path to improving expert judgement validity is 

through more description and less quantification 
 



All practitioners of risk assessment adopt ontologies of risk. These ontologies are 

usually implicit, and adopted without deep consideration, or even any awareness 

that other ontologies are possible. Risk researchers, on the other hand, are often 

greatly interested in exactly what risk is, and in subtle distinctions between risk 

and related concepts such as probability, certainty, and strength of evidence.  

The result is that critic and practitioner disagreements are often about the 

nature of validity rather than validity itself.  

 

Experts are current asked to estimate risks in contexts that assume: 

 

1. That actual risk is real and objective 

2. That individual estimates of risk have varying performance based on 

accuracy, certainty and calibration with respect to the actual risk 

3. That expert estimates of risk have superior performance 

4. That sophisticated elicitation and combination techniques improve expert 

performance 

 

For the purpose of our review, we granted the first two of these assumptions. 

This is the principle of pragmatic validity - that risk assessments should be 

judged based on how they are performed and used, rather than on external 

ontologies of risk.  

 

After making this concession, we then examined the best available evidence for 

the remaining two assumptions. We considered evidence about expert 

forecasting more generally, and risk estimation specifically. Neither assumption 

can be supported.  

 

It is a mistake to believe that expert status acquired through authority, 

experience or job description, carries with it an ability to make risk forecasts 

that are somehow more objectively accurate. Whilst it is plausible that some 

individuals have superior skill at risk forecasting, there is no method other than 

past performance to identify such people. And in the case of low frequency high 

consequence events, there is insufficient past data to make those judgements.  

 

It is also dangerous to suggest that convoluted methods of expert estimate 

elicitation or complicated mechanisms for estimate combination enhance the 

validity of expert judgements. Combining multiple forecasts will almost always 

result in a better forecast, but this improvement is realised by simple averaging 

of the individual judgements. Providing experts with an opportunity to interact 

may increase forecast accuracy, but improvement through this method is not 

guaranteed. Decomposing forecast problems and asking experts to tackle each 

component in turn has plausible benefits, but also plausible drawbacks.  

 

Against this lack of evidence must be weighted the unquestionable costs of using 

experts.  There is substantial time and money involved in selecting groups of 

experts and providing them opportunity to interact or participate in multi-stage 



elicitation processes. Worse, there is an increase in apparent validity without a 

corresponding increase in actual validity. Methods that increase cost and 

apparent validity should be justified by commensurate increases in actual 

validity. 

 

One thing that is known for sure is that experts tend to be overconfident in the 

accuracy of their forecasts. Complicated elicitation and combination methods 

make this worse. Their apparent sophistication increases the appearance of 

validity without improving actual accuracy. Complexity is bad for transparency. 

It disguises the effects of modelling assumptions and parameter selection. It 

risks applying expert opinions in ways that contradict the understanding of 

those very same experts. It disguises the fundamental weakness of expert risk 

estimation – that domain experts are being asked questions beyond the limits of 

their expertise – behind a cloak of algorithmic magic.  

 

Activities that increase the appearance of assurance at the same time as they are 

unable to provide useful assessment are examples of probative blindness (Rae & 

Alexander, 2017). Probative blindness contributes to the inability of 

organisations to appropriately update beliefs about danger, a central theme in 

theories of accidents such as “drift” (Dekker, 2011) and disaster incubation 

(Turner, 1976). 

 

What does this mean for conscientious analysts, researchers and decision 

makers, who want to make use of the best available evidence, but do not wish to 

overstate the quality and validity of that evidence?  

 

We should all pay attention to experts. When domain experts agree about causal 

mechanisms, that consensus should form an important element of prediction and 

planning. Where experts disagree, the contradictions provide important 

information about structural uncertainty, and tell us to be less confident in the 

predictions we make.  

 

However, it is clear that expert estimates are currently being elicited and applied 

– including by researchers – in ways that are not supported by the evidence 

about what experts are capable of. Expert risk assessments are not fit for 

purpose when used as truth-engines to measure risk as an objective quantity, so 

they should not be used for that purpose. 

 

Any solution requires more transparency surrounding the risk assessment 

process, including clear explanations of the underlying methodological 

assumptions. What exactly are “experts” being asked to do, and why are they 

believed to have superior performance at this task?  

 

We, the authors, are agnostic about how this is to be achieved, but we recognise 

two promising directions.  

 



The first possibility is to focus on risk assessment as a means of describing, 

rather than quantifying risk. See for example the work of Kristensen (2006), 

Flage (2009) and Aven (2013). Each of these papers suggests replacing 

probability as the core dimension of risk with a more nuanced explanation of 

uncertainty. This is in contrast to current practice, where, when uncertainty is 

described at all, it is a qualifier or modifier for risk expressed as a probability 

(Eduljee, 2000).  

 

There are open questions about the best way to communicate information about 

strength of evidence (Shackley & Wynne, 1996) and whether experts are in fact 

capable of distinguishing between their estimates and their uncertainties (Bolger 

& Rowe, 2015). 

 

The second possibility is to encourage practitioner acceptance of the 

constructivist view - that expert judgements about risk are a tool for 

communicating rather than quantifying risk. They gain validity through 

transparency. This view is consistent with standards for risk assessment review 

based on form and content, but is inconsistent with regulations based on the 

achievement of specific risk targets.   

 

Ultimately, safety is improved through better physical and organisational 

conditions, including but not limited to specific hazard controls. This is best 

served by open discussions about the sources of risk, the current safety 

measures, and the quality of the evidence informing decisions about further 

improvements. Expert opinion has an important role to play in these discussions, 

but this role should not be confused by methods that provide a false assurance of 

objectivity.  

 

Armstrong, J. S. (1985). Long-Range Forecasting: From Crystal Ball to Computer. 

New York: John Wiley & Sons. 

Armstrong, J. S., Green, K. C., & Graefe, A. (2015). Golden rule of forecasting: Be 

conservative. Journal of Business Research, 68(8), 1717–1731. 

https://doi.org/10.1016/j.jbusres.2015.03.031 

Aspinall, W. (2010). A route to more tractable expert advice. Nature, 463(7279), 

294–295. https://doi.org/10.1038/463294a 

Aven, T., & Heide, B. (2009). Reliability and Validity of Risk Analysis. Reliability 

Engineering & System Safety, 94(11), 1862–1868. 

https://doi.org/10.1016/j.ress.2009.06.003 



Aven, T., & Reniers, G. (2013). How to define and interpret a probability in a risk 

and safety setting. Safety Science, 51(1), 223–231. 

https://doi.org/10.1016/j.ssci.2012.06.005 

Ball, D. J. (2002). Environmental risk assessment and the intrusion of bias. 

Environment International, 28(6), 529–544. 

https://doi.org/10.1016/S0160-4120(02)00061-2 

Baron, J., Mellers, B. A., Tetlock, P. E., Stone, E., & Ungar, L. H. (2014). Two 

Reasons to Make Aggregated Probability Forecasts More Extreme. 

Decision Analysis, 11(2), 133–145. 

https://doi.org/10.1287/deca.2014.0293 

Bates, J. M., & Granger, C. W. J. (1969). The Combination of Forecasts. Journal of 

the Operational Research Society, 20(4), 451–468. 

https://doi.org/10.1057/jors.1969.103 

Bolger, F., & Rowe, G. (2015). The aggregation of expert judgment: do good 

things come to those who weight? Risk Analysis: An Official Publication of 

the Society for Risk Analysis, 35(1), 5–11. 

https://doi.org/10.1111/risa.12272 

Boring, R., Gertman, D., Joe, J., Marble, J., Galyean, W., Blackwood, L., & Blackman, 

H. (2005). Simplified Expert Elicitation Guideline For Risk Assessment Of  

Operating Events (No. INL/EXT-05-00433). Idaho National Laboratory. 

Burns, M., & Pearl, J. (1981). Causal and diagnostic inferences: A comparison of 

validity. Organizational Behavior and Human Performance, 28(3), 379–

394. 

Chhibber, S., Apostolakis, G., & Okrent, D. (1992). A taxonomy of issues related to 

the use of expert judgments in probabilistic safety studies. Reliability 



Engineering & System Safety, 38(1), 27–45. 

https://doi.org/10.1016/0951-8320(92)90103-R 

Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. 

International Journal of Forecasting, 5(4), 559–583. 

https://doi.org/10.1016/0169-2070(89)90012-5 

Cooke, R. M., & Goossens, L. H. J. (2004). Expert judgement elicitation for risk 

assessments of critical infrastructures. Journal of Risk Research, 7(6), 643–

656. https://doi.org/10.1080/1366987042000192237 

Cooke, Roger M. (2015). The Aggregation of Expert Judgment: Do Good Things 

Come to Those Who Weight? Risk Analysis, 35(1), 12–15. 

https://doi.org/10.1111/risa.12353 

Dekker, S. (2011). Drift into Failure. Farnham, UK: Ashgate. 

Eduljee, G. H. (2000). Trends in risk assessment and risk management. The 

Science of the Total Environment, 249, 13–23. 

Farrington-Darby, T., & Wilson, J. R. (2006). The nature of expertise: A review. 

Applied Ergonomics, 37(1), 17–32. 

https://doi.org/10.1016/j.apergo.2005.09.001 

Ferguson, N. (2009). The Ascent of Money: A Financial History of the World (1 

edition). New York: Penguin Books. 

Feynman, R. P. (2001). “What Do You Care What Other People Think?”: Further 

Adventures of a Curious Character. (R. Leighton, Ed.) (Reprint edition). W. 

W. Norton & Company. 

Fischhoff, B., Slovic, P., & Lichtenstein, S. (1982). Lay Foibles and Expert Fables in 

Judgments about Risk. The American Statistician, 36(3b), 240–255. 

https://doi.org/10.1080/00031305.1982.10482845 



Flage, R., & Aven, T. (2009). Expressing and communicating uncertainty in 

relation to quantitative risk analysis. Reliability & Risk Analysis: Theory & 

Application, 2(13), 9–18. 

Forteza, F. J., Sesé, A., & Carretero-Gómez, J. M. (2016). CONSRAT. Construction 

sites risk assessment tool. Safety Science, 89, 338–354. 

https://doi.org/10.1016/j.ssci.2016.07.012 

Galton, F. (1907). Vox Populi. Nature, 75(1949), 450–451. 

Goerlandt, F., khakzad, N., & Reniers, G. (2016). Validity and validation of safety-

related quantitative risk analysis: A review. Safety Science. 

Goldstein, D. G., McAfee, R. P., & Suri, S. (2014). The wisdom of smaller, smarter 

crowds (pp. 471–488). ACM Press. 

https://doi.org/10.1145/2600057.2602886 

Goodwin, P., & Wright, G. (2010). The limits of forecasting methods in 

anticipating rare events. Technological Forecasting and Social Change, 

77(3), 355–368. https://doi.org/10.1016/j.techfore.2009.10.008 

Graefe, A., Armstrong, J. S., Jones, R. J., & Cuzan, A. G. (2013). Combining Forecasts: 

An Application to Elections (SSRN Scholarly Paper No. ID 1902850). 

Rochester, NY: Social Science Research Network. 

Herzog, S. M., & Hertwig, R. (2009). The Wisdom of Many in One Mind Improving 

Individual Judgments With Dialectical Bootstrapping. Psychological 

Science, 20(2), 231–237. https://doi.org/10.1111/j.1467-

9280.2009.02271.x 

Kahan, D. M., Braman, D., Gastil, J., Slovic, P., & Mertz, C. K. (2007). Culture and 

Identity-Protective Cognition: Explaining the White-Male Effect in Risk 



Perception. Journal of Empirical Legal Studies, 4(3), 465–505. 

https://doi.org/10.1111/j.1740-1461.2007.00097.x 

Kaplan, S. (1992). “Expert information” versus “expert opinions”. Another 

approach to the problem of eliciting/ combining/using expert knowledge 

in PRA. Reliability Engineering & System Safety, 35(1), 61–72. 

https://doi.org/10.1016/0951-8320(92)90023-E 

Kerr, N. L., & Tindale, R. S. (2011). Group-based forecasting?: A social 

psychological analysis. International Journal of Forecasting, 27(1), 14–40. 

https://doi.org/10.1016/j.ijforecast.2010.02.001 

Kinney, W. R., & Uecker, W. C. (1982). Mitigating the Consequences of Anchoring 

in Auditor Judgments. The Accounting Review, 57(1), 55–69. 

Kokangül, A., Polat, U., & Dağsuyu, C. (2017). A new approximation for risk 

assessment using the AHP and Fine Kinney methodologies. Safety Science, 

91, 24–32. https://doi.org/10.1016/j.ssci.2016.07.015 

Koriat, A. (2012). When Are Two Heads Better than One and Why? Science, 

336(6079), 360–362. https://doi.org/10.1126/science.1216549 

Krauss, S., & T, X. (2003). The psychology of the Monty Hall problem: Discovering 

psychological mechanisms for solving a tenacious brain teaser. Journal of 

Experimental Psychology: General, 132(1), 3–22. 

https://doi.org/10.1037/0096-3445.132.1.3 

Kristensen, V., Aven, T., & Ford, D. (2006). A new perspective on Renn and 

Klinke’s approach to risk evaluation and management. Reliability 

Engineering & System Safety, 91(4), 421–432. 

https://doi.org/10.1016/j.ress.2005.02.006 



Larrick, R., & Soll, J. (2006). Intuitions About Combining Opinions: 

Misappreciation of the Averaging Principle. Management Science, 52(1), 

111–127. 

Laughlin, P. R., & Ellis, A. L. (1986). Demonstrability and social combination 

processes on mathematical intellective tasks. Journal of Experimental 

Social Psychology, 22(3), 177–189. https://doi.org/10.1016/0022-

1031(86)90022-3 

Lin, S.-W., & Bier, V. M. (2008). A study of expert overconfidence. Reliability 

Engineering & System Safety, 93(5), 711–721. 

https://doi.org/10.1016/j.ress.2007.03.014 

Makridakis, S., & Hibon, M. (2000). The M3-Competition: results, conclusions and 

implications. International Journal of Forecasting, 16(4), 451–476. 

https://doi.org/10.1016/S0169-2070(00)00057-1 

Mellers, B., Stone, E., Murray, T., Minster, A., Rohrbaugh, N., Bishop, M., … Tetlock, 

P. (2015). Identifying and Cultivating Superforecasters as a Method of 

Improving Probabilistic Predictions. Perspectives on Psychological Science, 

10(3), 267–281. https://doi.org/10.1177/1745691615577794 

Morgan, M. G. (2014). Use (and abuse) of expert elicitation in support of decision 

making for public policy. Proceedings of the National Academy of Sciences, 

111(20), 7176–7184. https://doi.org/10.1073/pnas.1319946111 

Mosleh, A., Bier, V. M., & Apostolakis, G. (1988). A critique of current practice for 

the use of expert opinions in probabilistic risk assessment. Reliability 

Engineering & System Safety, 20(1), 63–85. https://doi.org/16/0951-

8320(88)90006-3 



Notarianni, K., & Fischbeck, P. S. (1999). Dealing with Uncertainty to Improve 

Regulation. Presented at the Second Fire Safety Design in the 21st 

Century Conference, Worcester, MA. 

Rae, A. J., & Alexander, R. D. (2017). Probative blindness and false assurance 

about safety. Safety Science, 92, 190–204. 

https://doi.org/10.1016/j.ssci.2016.10.005 

Rae, A. J., Alexander, R., & McDermid, J. (2014). Fixing the cracks in the crystal 

ball: A maturity model for quantitative risk assessment. Reliability 

Engineering & System Safety, 125, 67–81. 

https://doi.org/10.1016/j.ress.2013.09.008 

Rae, A. J., McDermid, J. A., & Alexander, R. D. (2012). The Science and Superstition 

of Quantitative Risk Assessment. In Annual European Safety and Reliability 

Conference. Helsinki. 

Rosa, E. A. (1998). Metatheoretical foundations for post-normal risk. Journal of 

Risk Research, 1(1), 15–44. https://doi.org/10.1080/136698798377303 

Rosqvist, T. (2010). On the validation of risk analysis—A commentary. Reliability 

Engineering & System Safety, 95(11), 1261–1265. 

https://doi.org/10.1016/j.ress.2010.06.002 

Rowe, G., & Wright, G. (2001). Differences in Expert and Lay Judgments of Risk: 

Myth or Reality? Risk Analysis, 21(2), 341–356. 

https://doi.org/10.1111/0272-4332.212116 

Shackley, S., & Wynne, B. (1996). Representing Uncertainty in Global Climate 

Change Science and Policy: Boundary-Ordering Devices and Authority. 

Science, Technology & Human Values, 21(3), 275–302. 

https://doi.org/10.1177/016224399602100302 



Sjöberg, L. (2002). The Allegedly Simple Structure of Experts’ Risk Perception: 

An Urban Legend in Risk Research. Science, Technology, & Human Values, 

27(4), 443–459. 

Skjong, R., Wentworth, B. H., & others. (2001). Expert judgment and risk 

perception. In The Eleventh International Offshore and Polar Engineering 

Conference. International Society of Offshore and Polar Engineers. 

Slovic, P., Fischhoff, B., & Lichtenstein, S. (1979). Rating the Risks. Environment: 

Science and Policy for Sustainable Development, 21(3), 14–39. 

https://doi.org/10.1080/00139157.1979.9933091 

Slovic, P., Fischhoff, B., & Lichtenstein, S. (1985). Rating the Risks: The Structure 

Of Expert And Lay Perceptions. In V. T. Covello, J. L. Mumpower, P. J. M. 

Stallen, & V. R. R. Uppuluri (Eds.), Environmental Impact Assessment, 

Technology Assessment, and Risk Analysis (pp. 131–156). Springer Berlin 

Heidelberg. https://doi.org/10.1007/978-3-642-70634-9_7 

Smith, M. J. (2004). Mad Cows and Mad Money: Problems of Risk in the Making 

and Understanding of Policy1. The British Journal of Politics & 

International Relations, 6(3), 312–332. https://doi.org/10.1111/j.1467-

856X.2004.00142.x 

Solomon, M. (2006). Groupthink versus The Wisdom of Crowds: The Social 

Epistemology of Deliberation and Dissent. The Southern Journal of 

Philosophy, 44(S1), 28–42. https://doi.org/10.1111/j.2041-

6962.2006.tb00028.x 

Surowiecki, J. (2005). The Wisdom of Crowds (Reprint edition). New York: 

Anchor. 



Thomas, M. (2004). Engineering Judgement. In Proceedings of the 9th Australian 

Workshop on Safety Critical Systems and Software - Volume 47 (pp. 43–47). 

Darlinghurst, Australia, Australia: Australian Computer Society, Inc. 

Retrieved from http://dl.acm.org/citation.cfm?id=1082338.1082343 

Turner, B. A. (1976). The Organizational and Interorganizational Development of 

Disasters. Administrative Science Quarterly, 21(3), 378–397. 

https://doi.org/10.2307/2391850 

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and 

Biases. Science, 185(4157), 1124–1131. 

https://doi.org/10.1126/science.185.4157.1124 

Vul, E., & Pashler, H. (2008). Measuring the crowd within probabilistic 

representations within individuals. Psychological Science, 19(7), 645–647. 

Wallis, K. F. (2011). Combining forecasts – forty years later. Applied Financial 

Economics, 21(1–2), 33–41. 

https://doi.org/10.1080/09603107.2011.523179 

Wallsten, T. S., Budescu, D. V., Rapoport, A., Zwick, R., & Forsyth, B. (1986). 

Measuring the vague meanings of probability terms. Journal of 

Experimental Psychology: General, 115(4), 348–365. 

https://doi.org/10.1037/0096-3445.115.4.348 

Wang, Q., Wang, H., & Qi, Z. (2016). An application of nonlinear fuzzy analytic 

hierarchy process in safety evaluation of coal mine. Safety Science, 86, 78–

87. https://doi.org/10.1016/j.ssci.2016.02.012 

Wardekker, J. A., van der Sluijs, J. P., Janssen, P. H. M., Kloprogge, P., & Petersen, A. 

C. (2008). Uncertainty communication in environmental assessments: 



views from the Dutch science-policy interface. Environmental Science & 

Policy, 11(7), 627–641. https://doi.org/10.1016/j.envsci.2008.05.005 

Warren, L. (2004). Uncertainties in the analytic hierarchy process. DTIC 

Document. Retrieved from 

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identi

fier=ADA431022 

Wildavsky, A., & Dake, K. (1990). Theories of Risk Perception: Who Fears What 

and Why? Daedalus, 119(4), 41–60. 

Wright, G., Bolger, F., & Rowe, G. (2002). An Empirical Test of the Relative 

Validity of Expert and Lay Judgments of Risk. Risk Analysis, 22(6), 1107–

1122. https://doi.org/10.1111/1539-6924.00276 

Wright, G., & Rowe, G. (2011). Group-based judgmental forecasting: An 

integration of extant knowledge and the development of priorities for a 

new research agenda. International Journal of Forecasting, 27(1), 1–13. 

https://doi.org/10.1016/j.ijforecast.2010.05.012 

Zajonc, R. B. (1962). A Note on Group Judgements and Group Size. Human 

Relations, 15(2), 177–180. 

https://doi.org/10.1177/001872676201500206 

Zhang, G., & Thai, V. V. (2016). Expert elicitation and Bayesian Network modeling 

for shipping accidents: A literature review. Safety Science, 87, 53–62. 

https://doi.org/10.1016/j.ssci.2016.03.019 

Zhou, X., Shi, Y., Deng, X., & Deng, Y. (2017). D-DEMATEL: A new method to 

identify critical success factors in emergency management. Safety Science, 

91, 93–104. https://doi.org/10.1016/j.ssci.2016.06.014 

 


